NIGERIAN JOURNAL OF SCIENCE AND ENVIRONMENT
Journal of the Faculties of Science and Agriculture, Delta State University, Abraka, Nigeria

ISSN: 1119-9008
DOI: 10.5987/UJ-NJSE
Email: njse@universityjournals.org


VERIFICATION OF EILENBERGE- MACLANE SPACES USING OBSTRUCTION THEORY AND INDUCTION ARGUMENT

DOI: 10.5987/UJ-NJSE.17.120.1   |   Article Number: F6A26525   |   Vol.12 (1) - May 2013

Authors:  Atonuje A. O. and Okwonu F. Z.

By using the obstruction theory and induction argument, we show that
is an isomorphism for and is surjective. With kernel K
(G,n), the subgroup generated by is the subgroup generating and
we establish that the homomorphism is zero. Since it is surjective, implies that
Hence has the required properties on its homotopy groups making an Eilenberg – Maclane
space.

Atiyah, M. F. (1966). K- Theory and Hopf invariant. Quarterly Journal of Mathematics (Oxford) 2 (17): 31 – 38.

Cohen, R. L. ed. (1998). Notes on the topology of fiber bundles. Standford University Press, California

Hilton, P. and Wylie, S. (1967). Homology Theory. Cambridge University Press,

Cambridge.

Hurewicz, W. (1955). On the concept of a fiber space. Proceedings of National

Academy of Science, U. S. A. 27: 956 n+k (Xn+k+1) 0. Õ = n k 1 X + + – 961.

Lewis, L. G; May, J. P. and Steinberg (1986). Equivariant stable homotopy

Theory, Lecture notes in Mathematics Springer Verlag, 1213, New-York

Maunder, R. (1996). Algebraic Topology. Dover Publishers, New-York.

Milnor, J. (1959). On spaces having the homotopy type of CW-complex. Transactions of American Mathematics Society 90: 272 – 280.

Montgomery, D and Zippin, L. (1955). Topological transformation groups. Inter-

Science Publishers, New-York.

Spanier, E. (1966). Algebraic Topology. Springer Verlag, New-York

Weil, A. (1960). On discrete subgroups of lie groups. Annals of Mathematics 72:

369 – 384.