NIGERIAN JOURNAL OF SCIENCE AND ENVIRONMENT
Journal of the Faculties of Science and Agriculture, Delta State University, Abraka, Nigeria

ISSN: 1119-9008
DOI: 10.5987/UJ-NJSE
Email: njse@universityjournals.org


CONTINUOUS DEPENDENCE OF FIXED POINTS OF SOME PARTICULAR MAPS IN COMPLETE METRIC SPACE

DOI: 10.5987/UJ-NJSE.17.140.1   |   Article Number: 44C991FA15   |   Vol.15 (1) - November 2017

Authors:  Rauf, K , Aiyetan, B. Y and Aniki, S. A

Keywords: Continuous dependence, complete metric space, contractive condition and comparison function.

In this paper, we prove the continuous dependence of fixed points in a complete metric space. We show that for function satisfying certain condition with iterative process is continuous and depend on parameter of the space. Results of the investigation revealed that Mann and Kranoselskij iteratives are satisfied with general contractive conditions.

Banach, S. (1922). Sur les operations dans  les ensembles et leur applications aux equations integrals. Fund. Math. 3, 133-181.

Berinde, V. (2007). Iterative approximation of fixed points. Verlag Berlin Heidelberg: Springer.

Choudhury, B. S., Metiya, N. and Debnath, P. (2016). End point results in metric spaces endowed with a graph, Journal of Mathematics, 2016, Article ID: 91301017, (2016), DOI: 10.1155/2016/9130107.

Debnath, P. (2014). Fixed points of contractive set valued mappings with set valued domains on a metric space with graph, TWMS Journal of Applied and Engineering Mathematics,  4 (2), 169-174.

Debnath, P., Choudhury, B. S. and Neog, M. (2017). Fixed set of set valued mappings with set valued domain in terms of start set on a metric space with a graph, Fixed Point Theory and Applications, 5, DOI: 10.1186/s13663-017-0598-8.

Eshi, D. Das, P. K. and Debnath, P. (2016). Coupled coincidence and coupled common fixed point theorems on a metric space with a graph, Fixed Point Theory and Applications, 2016 (37), DOI:10.1186/s13663-016-0530-7.

Gursoy, F., karakaya, V., Rhoades, B.E. (2013). Some Convergence and stability result for the Kirk multistep and Kirk-SP fixed point iterative algorithms for contractive-like operators in normed linear spces, math.FA,(2013), arXiv:1306.1954v1

Imoru, C. O., Olatinwo, M. O., and Owojori, O. O. (2006). On the stability results for Picard and Mann iteration procedures, J. Appl. Funct. Differ. Eqn. JAFDE 1(1), 71-80.

Kazimierz, Goebel., & Williams, A. Kirk. (1990). Topics in metric fixed point theory. Sydney: Cambridge University Press.

Mann, W. R. (1953). Mean value methods in iteration, Proc. Amer. Math. Soc. 44, 506-510.

Mohamed, A. Khamsi and Williams, A. Kik. (2001). An introduction to metric spaces and fixed point theoy. New York: John Willey and sons.

Neog, M. and Debnath, P. (2017). Fixed points of set valued mappings in terms of start point on a metric space endowed with a directed graph, Mathematics, 2017,  5-24.

Olatinwo, M.O. (2008). Some stability results for two hybrid fixed point iterative algorithms of Kirk-Ishikawa and Kirk-Mann type. J. Adv. Math. Studies 1(1-2) (2008), 87-96.

Olatinwo, M.O. (2010). On the continuous dependence of the fixed points for (- contractive type operators: Kragujevac Journal of Math. 34, 91-102.

Ravi, P. Agarwa., Donal, O”Regan., & Sahu, D. R. (2000). Fixed point theory for lipschitzian type mapping with application. Dordrecht, Boston, London: Springer.

Rauf, K. and Wahab, O. T. and Ali, A. (2017). New Implicit Kirk-type Schemes for Contractive-like for a general Class of Quasi-Contractive Operator in generalized Convex Metric Spaces. Australian Journal of Mathematical Analysis and Applications. 14 (1)(8), 1-29.

Rus, I. A. (2001).  Generalized contractions and applications.  Cluj Napoca: Cluj Univ. Press.

William, A. Kirk and Brailey, Sim. (2001). Handbook of metric fixed point theory. Dordrecht, Boston, London: Kluwer Academic Publishes.

Zeidler, E. (1986)Nonlinear functional analysis and its applications-Fixed point theorems: Springer.