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tion of  and . Geometrically, a convex 

combination of  and  is a point some-

where between  and  (Pemberton and 

Nicholas, 2007). 

Definition 1.2 A set  is convex if 

 implies  for 

all  The definition of a convex set 

immediately implies that  is convex if and 

only if  is either empty, a point, or an inter-

val. Throughout this work we suppose that 

 is a convex subset of   (Pemberton 

and Nicholas, 2007). 

Definition 1.3 is concave if for 

any , we have, for all  

      
(1) 

 is strictly concave if for any 

, with , we have, for all 
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1.0 INTRODUCTION 

Most times it is assumed that analyses on   

are more acceptable with regards to applica-

tion, and further that they generalize those on 

. Unfortunately these assumptions leave 

new entrants into the field of mathematics 

handicapped and perhaps into concluding that 

the mountains are unscalable! In addition, it is 

a known fact that the results and proofs for 

works on  and   do not always follow 

the same trend. This work presents a strong 

base for the understanding of quasiconcave 

functions on  It presents characterizations 

of real-valued single-variable quasiconcave 

functions. These results have not been proved 

on   

A quasiconcave function is a real-valued func-

tion defined on an interval or a convex subset 

of a real vector space such that the inverse im-

age of any set of the form  is a con-

vex set. As will be seen later all concave func-

tions are quasiconcave, but not all quasicon-

cave functions are concave. So quasiconcavity 

is a generalization of concavity. 

Definition 1.1 If  and  

then  is a convex combina-
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(Pemberton and Nicholas, 2007; Goyan and 

Ravi,2008; Simon, 2011). 

 In words, a function is concave if its 

value at the linear combination between two 

points in its domain is greater than or equal to 

the weighted average of the function’s values 

at each of the points considered 

In practical terms, the difference is that con-

cavity allows for linear segments, but strict 

concavity does not. Concavity allows for as-

cending and descending linear segments. Ver-

tical segments are excluded because of

. Horizontal segments are excluded, 

because such lines would allow chords to be 

drawn above the curve, violating the require-

ments of equation (Pemberton and Nicholas, 

2007). 

 

2.0 QUASICONCAVE FUNCTIONS 

Definition 2.1  

A function  is called qua-

siconcave if its domain and all its superlevel 

sets 

         (3) 

for  are convex (Goyal and Ravi, 

2008; Boyd and Vandenberg, 2004). 

A function is quasiconvex if  is quasicon-

cave, that is, every sublevel set 

 is convex. A func-

tion that is both quasiconcave and quasicon-

vex is called quasilinear. A function is quasi-

linear if its domain, and every level set 

 is convex. 

Quasiconcavity requires that each sublevel set 

be an interval (including, possibly, an infinite 

interval).  

2.2 Examples of Quasiconcave Func-

tions 

The following are examples of quasiconcave 

functions on : 

Logarithm:  on  is quasicon-

cave (and quasiconvex, hence quasilinear) 

Ceiling function:  

is quasiconcave (and quasiconvex) 

These examples show that quasiconcave func-

tions can be discontinuous (Boyd and Vanden-

berg, 2004). 

We can give a simple characterization of qua-

siconcave functions on . We consider con-

tinuous functions, since stating the conditions 

in the general case is cumbersome: 

A continuous function  is qua-

siconcave if, and only if, at least one of the 

following conditions holds: 

 is nonincreasing 

 is nondecreasing

there is a point  such that for 

 (and ),  is nondecreas-

ing, and  (and ), and  is 

nonincreasing (Boyd and Vandenberg, 2004). 

 

3. 0 THE LINE SEGMENT AND LOCAL 

MINIMUM PROPERTY                                                                          
It is quite difficult to get simple necessary and 

sufficient conditions for quasiconcavity in a 

case where  is twice continuously differenti-

able. Thus we will need the following defini-

tions 

Definition 3.1 Let  be a nonempty open 

interval, then   has the line segment 

minimum property if and only if for , 

, 

    (3) ex-

ists (Diewert et al., 1981).                                                                                                                             

That is, the minimum of  along any line 

segment in its domain of definition exists. 

It is easy to verify that if  is a quasiconcave 

function defined over the interval , then it 

satisfies the line segment minimum property 

(3), since the minimum will be attained at one 
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or both of the endpoints of the interval; that is, 

the minimum will be attained at either  

or  (or both points) since 

 for  is equal 

to or greater than  and this 

minimum is attained at either  or  

(or both points). 

Definition 3.2 Let , the function  

defined over an interval  attains a semis-

trict minimum at  if and only if 

there exist  and  such that 

,  and  

             (4) 

for all  such that  

;       (5) 

and 

                                                              

        (6) 

(Goyal And Ravi, 2008).         

If  just satisfies (4) at the point , then it 

can be seen that it attains a local minimum at 

. But conditions (5) and (6) show that a 

semistrict local minimum is stronger than lo-

cal minimum: for  to attain a semistrict lo-

cal minimum at such , we need  to at-

tain a local minimum at such , but the 

function must eventually strictly increase at 

the end points of the region where the func-

tion attains the local minimum. Note that  

attains a strict local minimum at such 

if and only if there exists 

such that   and  

                                                                  

           (7) 

for all  such that  

but . 

It can be seen that if attains a strict local 

minimum at , then it also attains a semis-

trict local minimum at . Hence, a semis-

trict local minimum is a concept that is inter-

mediate to the concept of a local and strict lo-

cal minimum (Bronson and Naadimuthu, 

1997; Peresini et al., 1993; Wenyu and 

Yaxiang, 2006). 

4.0 CHARACTERIZATIONS OF QUA-

SICONCAVE FUNCTIONS 

Theorem 4.1 The Minimum Function Val-

ue Test Characterization of Quasiconcave 

Functions: Let  be a closed inter-

val, a function  is quasiconcave if 

and only if for  and    

.   (8)                                               

Proof: First, let  

be convex. Take  and  . 

Assume without loss of generality that  

                                                              

(9) 

Thus, , and by the convexity of  

we have that  , which 

means that 

                                       

   (10) 

Suppose 

 

for all  and  . Let 

, then  and , and so                

. By hypothesis 
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  and 

hence  

The above result means that the line segment 

joining  to   that has height equal to the 

minimum value of the function at the point  

and  lie below (or is coincident with) the 

graph of   along the line segment joining  

to   (Frenchel, 1953; Arrow and Enthoven, 

1961; Avriel et al., 1988; Ginsberg, 1974; Or-

tega and Rheinboldt, 1970). This is a variant 

of Jensen’s inequality that characterizes qua-

siconcavity. 

If  is concave over , then 

 (by (2)11) 

,                (12)  

where the second inequality results from the 

fact that  is an average 

of  and . Thus if  is concave it 

is also quasiconcave. This characterization 

can be written in an equivalent form as shown 

in the next result, thus we can use them inter-

changeably. 

 

Theorem 4.2 The Function Value Compar-

ison Characterization of Quasiconcavity 

 Let  be open, then  is 

quasiconcave if and only if for , 

  

(13)

Proof: Suppose  

Since , it follows 

that 

   (14) 

Conversely, suppose  

 

then for   we have that  

.          (15) 

Thus 

 

This means that the function  is quasicon-

cave if  implies that its value at 

a convex combination of two points in its do-

main is greater than or equal to  which is 

the function value of the smaller function val-

ue of the two points. A version of this result 

for functions defined on  exists in Manga-

sarian (1969 and Takayama (1995). 

    

4.3 The Derivative-Based Characteriza-

tion of Quasiconcavity  

Theorem 4.3a  First Order Condition: 

Let  be a once differentiable func-

tion defined over the open interval , 

, ;  then  is quasiconcave if 

and only if  

        (16) 

Proof: (8) (16). We show that not (16) 

implies not (8). Not (16) means that there exist               

 such that 

                    (17) 

and 

                   (18) 

Define the function of one variable  for 

 by 

           (19) 

It can be verified that 

     (20) 

It can also be verified that the derivative of 

 for  can be computed as 

follows 
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    (21) 

Evaluating (21) at  and using     (17) 

shows that  

                                                                      

                        (22) 

Since the first order partial derivative of  is 

continuous, it can be seen that (22) implies the 

existence of a  such that 

                                                                     

                     (23) 

and  

                  (24) 

for all  such that . 

Thus  is a decreasing function over this 

interval of ’s and thus  

                          

 (25) 

But (23) and (25) imply that 

                                                        

      (26) 

where . Since (23) implies 

, (26) contradicts (8). 

 (16) (8). We show not (8) implies not 

(16). Not (8) means that there exist 

 and  such that 

                                                                   

                 (27) 

and 

     (28) 

For , define the function  as 

follows: 

          (29) 

Define as follows:  (30) 

and note that and  

                                                          

(31) 

             (By (28)) 

             (By (29)) 

The continuity of  implies that  and 

 are continuous functions of . 

Now consider  along the line segment 

. The inequality (31) shows that 

 eventually decreases from  to the 

lower number  along this interval. Thus 

there must exist a  such that 

 ;         (32) 

             (33) 

for all   and                                                                        

.                (34) 

Essentially, the (32), (33) and (34) say that 

there exists a close interval to the immediate 

left of the point , such that 

 is less than or equal to  for  in 

this interval and the lower boundary point of 

the interval, , is such that  equals 

. 

          (35) 

for  such that . Then by the 

Mean Value Theorem, there exists  such 

that  and  

                                                            

            (36) 

   (By (35) ) 

                                                                      

  (By (34)) 

But (36) contradicts , which is 

equivalent (28). Thus our supposition is false. 
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Hence there exists  such that 

                                                                     

                              (37) 

and  

 .                                   (38) 

By (33) we have 

 .                              (39) 

Using definition (29), the inequalities (38) and 

(39) translate into the following inequalities: 

                                                      

      (40) 

                                                       

 (By (27)) 41) 

                                                                 

                             (42) 

Now define                                                                  

          (43) 

and note that the inequalities (37) imply that 

                                                                        

                     (44) 

Using definition (43), we have 

                                                           

   (45) 

                                                                     

       (46) 

                

Note that (46) implies that 

                                                           

.   (47) 

Substituting (43) and (47) into (41) we have 

that  

                                                         

    (48) 

 ,  since    

                              (49) 

The inequalities (48) and (49) show that (16) 

does not hold, with  playing the role of  

in condition (16).  

In this characterization we assumed that  is 

open and that the derivative of  exists and is 

a continuous function over . This result is a 

single variable version of the several variable 

form on  as given in Mangasarian (1969) 

and Huang and Crook (1997). 

Now consider the following result which is 

contrapositive to Theorem 4.3a making them 

(Theorem 4.3a and Corollary 4.3b) logically 

equivalent. 

 

Corollary 4.3b First Order Condition: Let 

 be an open interval in  and suppose  

 is a once differentiable function, 

then  is quasiconcave if and only if  

                            

.   (50) 

 (Arrow and Enthoven, (1961). 

Proof: Condition (50) is contrapositive to 

condition (16) and is logically equivalent to it.   

 

Next we present a characterization of qua-

siconcavity for functions defined on  

through the line segment minimum property. 

 

4.4 Line Segment Minimum Property 

Characterization of Quasiconcavity 

Theorem 4.4 Suppose   has 

the line segment minimum property for 

, then  is quasiconcave if and only if  

                                           

      (51) 

does not attain a semistrict local minimum for 

any  such that . 

Proof: Quasiconcavity  (51): This 

equivalent to showing that not (51) implies 

not (8). Not (51) means there exists  such 

that  and  attains a semis-
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trict local minimum at . This implies the 

existence of  such that  

;                   (52) 

;  .  (53) 

From the definition of  (53) implies that 

                        

.   54) 

But (52) can be used to show that the point 

 is a linear combination of the 

points  

 and , and 

hence (54) contradicts the definition of qua-

siconcavity, (8). Hence  is not quasiconcav-

ity.  

(56)  quasiconcavity (8): This is equiva-

lent to showing not (8) implies not (51). Sup-

pose  is not quasiconcave. Then there exist 

, and  such that  and 

  .     (55) 

Define  for 

. Since  is assumed to satisfy 

the line segment minimum property, there ex-

ists a  such that  and 

     (56) 

The definition of  and (55) shows  satis-

fies  and  

.   (57) 

Thus  attains a semistrict local minimum, 

which contradicts (51).   

 

4.5 The Derivative-Based Characteriza-

tion of Quasiconcavity-Second Order Con-

dition 

Theorem 4.5: Let  be a nonempty 

open interval. Then  a twice differ-

entiable function is quasiconcave if and only if 

for  with  

 

does not attain a semistrict local minimum at 

. 

Proof: We need to show that (58) is equiva-

lent to (51) in the twice differentiable case. 

(51) is equivalent to the property that for 

    and 

            (59) 

does not attain a semistrict local minimum at 

.  

Consider case (i). If this case occurs, then 

 attains a strict local maximum at 

 and hence cannot attain a semistrict 

local minimum at . Hence, in the twice 

differentiable case (58) is equivalent to (59).  

 

The above result is similar to the several varia-

ble form in Diewert et at. (1981).  

 

4.6 Upper Level Set Characterization of 

Quasiconcave Functions

Theorem 4.6: Let  be a nonempty open 

interval. The function   is quasicon-

cave if and only if for every    

the upper level set  

                           

(60) 

is convex. 

Proof: Since (8) characterizes quasiconcavity, 

it is sufficient to show that it is equivalent (60) 

: Let , 

 and ,  

                                                  

 and      (61) 

From (8), we have that 
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       (62) 

where the last inequality follows by using 

(61). But (62) shows that                                                  

 and thus  is a 

convex set. 

: Let ,  and 

let . Thus  

and hence, . Similarly,  and 

hence, . Since  is convex, we have 

that . Hence using the 

definition of , we have  

                                 

.          (63) 

5.0 QUASICONCAVITY AS A GEN-

ERALIZATION OF CONCAVITY. 

Now, let us consider the relationship between 

quasiconcavity and concavity. 

Theorem 5.1 Let   be con-

cave then  is quasiconcave. 

proof: Let  and . 

Since  is concave on  we have that 

                                     

  (64) 

,                   (65)  

where the second inequality results from the 

fact that  is an average 

of and . Thus if is concave it 

is also quasiconcave.   

That is every concave function is quasicon-

cave. The converse of this is not true. We 

show this in the next result. 

Corollary 5.2 Not every quasiconcave func-

tion is concave 

Proof: To prove this, it is sufficient to show a 

counter-example. Now, define a function  

on  by  

We will first show that  is quasiconcave and 

thereafter show that it is not concave. 

By definition  is an increasing function, and 

so  

for any . Thus 

 

By the increasing nature of  we have that  

    is quasiconcave. 

Next we show that  is not concave. Consid-

er two points  where 

, and . Then 

       (66) 

Now  

 

so that 

     (67)         

which implies that 

 

Thus  is not concave.    

Thus quasiconcavity is a generalization of 

concavity. By extension we have the follow-

ing results for the relationship between con-

vexity and quasiconvexity.  

Theorem 5.3 Let   be convex 

then  is quasiconvex. 
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Corollary 5.4 Not every quasiconvex function 

is convex. 

To proves of these last two results follow sim-

ilar arguments as in the previous two. Thus 

quasiconvexity is a generalization of convexi-

ty. 

 

6.0 CONCLUSION 

Although some of these results already exist 

for functions of several variables, they have 

not been proved for real-valued functions of 

single variable. This could be as a result of the 

assumption that analysis on  generalizes 

those on . As true as this may seem, it is 

obvious that the results and proofs have rela-

tively deferent make-ups for functions on . 

Thus this work provides a very good base for 

understanding the concept of quasiconcavity. 
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