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ABSTRACT 

Boosting is a bias reduction technique while bagging is a variance reduction method. These two 

methods aim at reducing the asymptotic mean integrated square error (AMISE). This study aims to 

show that bagging is a boosting algorithm in kernel density estimation since both techniques use large 

smoothing parameter(s). This relationship was verified by real and simulated data. 
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INTRODUCTION 

Boosting (Freund and Shapire, 1995) and 

bagging (Breiman, 1996) are two techniques 

used for combining weak models in order to 

build better models (Rosset, 2003; Rosset et 

al., 2004). These algorithms have been 

discussed by many researchers (Friedman et 

al., 2000; Buhlmann and Yu, 2003; Mason et 

al., 1999), and they have come up with 

different views. The general theoretical and 

practical conclusion reached is that the weak 

learners for boosting should be weak while the 

weak learners for bagging should be strong and 

in “bias-varianceˮ terms, bagging is a variance 

reduction technique while boosting is bias 

reduction operation (Rosset, 2003; Ridgeway 

2002).  

Boosting and bagging have been shown 

to be connected because the bootstrap 

procedure can reduce to boosting procedure, 

and it implies that the bagging algorithm is a 

boosting algorithm provided there is an 

appropriate loss function, thus bagging can be 

considered as a boosting algorithm which 

utilizes a very robust linear function as 

explained by Rosset (2003). Bagging  has 

resulted in excellent performance in classifi-

cation and regression problems (Breiman, 1998 

and Breiman, 2001), leading to taking bagging 

as a reference point when boosting is been 

evaluated (Gey and Poggi, 2006). 

The boosting model involves the re-

weighting of data based on a loss function and 

in the case of the kernel density estimation; 

Marzio and Taylor (2004, 2005) obtained such a 

measure by comparing their first boosting step 

with the leave-one-out estimate (Silverman, 

1986). The multivariate boosting algorithm using 

the product kernel is a sequential algorithm where 

at each step   the weak learner is computed as: 
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Where   is a fixed kernel,    are the smoothing 

parameter(s) and   ( ) is the weight of 

observation   at step  . The weight of each 

observation is updated as: 
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where  ̂ 
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In boosting in kernel density estimation, the 

weights will be updated at each step, and the 

final output is the product of all the density 

estimates, normalised so that the integrand is 

unity (Marzio and Taylor, 2004). The algo-

rithm given below is for the multidimensional 

case in which the product kernel was 

employed. In product kernel, the axes are 

restricted to be parallel to the coordinate axis 

and 𝒅 inde-pendent smoothing parameters are 

allowed for each of the coordinate axes (Sain, 

2002).  
 

ALGORITHM (Marzio and Taylor 

Algorithm 2005) 
 

STEP 1.  Given 
    (             )

                        

 

Initialise      ( )    ⁄  
 

STEP 2. Select               the 

smoothing parameters. 
 

STEP 3.  For        .  

 

(i) Obtain a weighted kernel estimate. 

 

 
 

(ii) Update the weights according to: 

 

 
 

STEP4.  Provide as output 

 

 
 

where   is the normalization constant such that  

 ̂ ( ) integrates to unity. 

Marzio and Taylor (2004, 2005) boosting 

algorithm for kernel density estimation takes 

the form of a multistep estimators whose first 

step is the standard kernel method. Boosting in 

kernel density estimation is a higher-order bias 

method that uses the basic kernel density 

estimator as its weak learner while bagging is a  

variance reduction technique  in  kernel density  

estimation with larger smoothing parameter.   

 

 

Bandwidth selection in boosting and bagging 
As generally known, in kernel density 

estimation methods, the right choice of the 

smoothing parameter must be made due to its 

importance in the process of estimation and much 

research has been done on smoothing parameter 

selectors. The rules for selecting smoothing 

parameters are generally based on the simple idea 

of balancing the asymptotic integrated squared 

bias and the asymptotic integrated variance 

globally (Sain, 2002). 

Boosting and bagging in kernel density esti-

mation are connected by using larger smoothing 

parameter because in kernel density estimation 

both methods are based on the principle of 

oversmoothing and appropriate “weak learner”. 

A complex learner is characterized by low bias 

and big variance (Marzio and Taylor, 2005; 

Ishiekwene, 2008) while a weaker learner is 

characterized by big bias and low variance. This 

means that a natural and direct approach for 

reducing the complexity of whatever kernel 

method is by oversmoothing because larger 

smoothing parameter increases the bias and 

reduces the variance (Marzio and Taylor, 2005).  

In statistical terms, a strategy was devised 

by Marzio and Taylor (2005) as “use very biased 

and low variance estimates by adopting larger 

smoothing parameters, then reduce the bias 

component using several boosting steps”. 

Bagging in kernel density estimation involves 

using larger smoothing parameter to reduce the 

variance term. The smoothing parameter can be 

described as a major determinant for boosting and 

bagging because oversmoothing weakens the 

learner thereby reducing the variance  and with 

several boosting steps the bias will also be 

reduced which resulted in a reduction in the 

asymptotic mean integrated squared error (Marzio 

and Taylor, 2005). 

Boosting and bagging aimed at reducing the 

bias and the variance term that resulted in a 

reduction in the asymptotic mean integrated 

squared error (AMISE). This reduction in the 

AMISE can easily be achieved by using large 

smoothing parameter(s) to reduce the variance 

term first, and then carry out some boosting steps 

to reduce the bias term which means bagging can 

be considered as a  boosting  algorithm  in  kernel  
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density estimation.  

 

 

RESULTS 

The study aims is to reduce the variance 

term and then carry out some boosting stepsin 

order to reduce the bias term. To achieve this, 

the study used the oversmoothed bandwidth for 

each of the data set considered because large 

smoothing parameter is needed for boosting 

and bagging to be effective and beneficial. The 

study calculated the variance, bias, and the 

asymptotic mean integrated squared error 

(AMISE) as seen in Tables 1 and 2. The first 

data set examined is the Annual Snowfall in 

Buffalo Scott (1992). The sample size of this 

data is 63. 

 

 
Table 1. Analysis of bagging and boosting steps. 

 

Analysis Normal 1st boosting 2nd boosting 

Bias2 0.237633000 0.023185300 0.000782669 

Variance  0.000386261 0.000386261 0.000386261 

AMISE 0.238019261 0.023571561 0.001168930 

 

 
Table 2.Analysis of bagging and boosting steps. 

 

Analysis  Normal 1st boosting 2nd boosting 

Bias2 0.071910300 0.000550635 0.0000006147 

Variance 0.000148035 0.000148035 0.0001480350 

MISE 0.072058335 0.000698670 0.0001486497 

 

The oversmoothed bandwidth for the Snowfall 

data (    ) is 11.5924. The same smoothing 

parameter was used for the various boosting 

steps, showing the same variance value in Table1 

while the bias term is been progressively reduced. 

This smoothing parameter reduced the variance 

term (bagging) and with two boosting steps,the 

bias term was reduced and it resulted in a 

reduction in the asymptotic mean integrated 

squared error (AMISE). 

Table 1 shows the analysis of the first and 

second boosting iterations with the result being a 

reduction in the bias and AMISE at last. The 

second data setof sample size 100 were simulated 

without reference to any distribution that is, they 

were randomly simulated real numbers. The 

oversmoothed bandwidth values are    
         and          . The product kernel 

estimate using these smoothing parameter values 

is shown in Figure2 while the kernel estimates 

(surface plots and contour plots) of the “boosted” 

and “bagged” version of this data are shown in 

Figure 3 and Figure 4. 

The kernel estimate (surface plot and 

contour plot) of the oversmoothed bandwidth 

shows clearly that the data are bimodal. This 

bimodality is obviously noticed even in the first 

and second boosting steps with the estimates 

being smoother. Table 2shows the analysis of the 

first and second boosting iterations with the result 

being a reduction in the bias and AMISE with the 

variance remaining unchanged in  each of the 

boosting steps because the same smoothing  para- 

 

 
 
Figure 1. (A) Kernel estimate of oversmoothed bandwidth; (B) Estimates of oversmoothed bandwidth with 1st and 2nd boosting 
steps. 
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Figure  2. (A)Surface plot of oversmoothed bandwidth; (B) Contour plot of oversmoothed bandwidth. 

 

 

 
 

Figure 3. (A) Surface plot of first boosting step; (B) Contour plot of first boosting step.  

 

 

 
 

Figure 4. (A) Surface plot of second boosting step; (B) Contour plot of second boosting step.  

 

 

meter was applied. This also confirms that 

boosting is a bias reduction while bagging is a 

variance reduction method. Table 3 shows the 

simulated data. 

 

 

Conclusions 

Boosting and bagging in kernel density 

estimation are bias, and variance reduction 

techniques characterized by using larger 

smoothing parameter(s) suggested a powerful 

new tool for addressing the curse of 

dimensionality effects (Marzio and Taylor, 2004). 

Since large bandwidths reduce the variance term 

of the AMISE and increases the bias term, the 

study carried out two boosting steps to 

demonstrate the reduction of the bias and 

variance term that translated to a reduction in the 

AMISE using the oversmoothed bandwidth. As 

can be seen from Figures 1 to 4 and Tables 1 and 2, 

bagging can be considered as a boosting algorithm 

in kernel density  estimation  since  both  methods 
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Table 3. Sets of simulated data N=100. 
 

X 9.250 19.92 14.94 7.440 17.74 17.51 7.574 11.63 19.11 10.56 19.50 19.06 17.95 7.067 6.470 15.75 8.050 9.375 13.39 19.72 

Y 58.74 57.18 66.94 63.56 58.41 59.15 60.40 67.59 61.88 67.32 62.39 60.43 56.72 62.65 60.29 68.30 58.54 62.88 67.31 68.61 

                     

X 19.74 14.84 11.53 11.36 15.30 7.234 9.002 8.477 18.21 19.72 9.286 5.180 13.12 13.67 15.72 16.04 11.55 6.143 5.650 13.04 

Y 60.50 60.23 68.46 66.67 61.83 69.85 65.34 69.97 58.51 69.25 57.36 58.57 56.17 67.11 58.42 61.50 55.11 57.40 57.44 56.73 

                     

X 12.90 5.199 13.82 10.22 16.81 17.74 8.014 9.086 6.617 14.39 6.216 10.30 9.835 5.057 14.40 10.06 18.44 15.96 13.82 16.50 

Y 56.48 63.43 69.92 60.40 64.44 62.38 65.76 69.33 58.12 60.23 57.29 60.81 67.94 60.39 67.95 58.97 57.81 59.52 56.92 60.84 

                     

X 16.78 12.37 8.100 11.38 18.92 6.775 19.17 10.77 13.97 9.803 11.59 5.894 18.23 16.15 18.56 7.572 11.67 10.39 7.013 12.78 

Y 59.36 64.19 57.38 63.50 66.57 59.20 66.06 57.30 60.57 64.21 68.26 58.43 62.75 57.23 65.87 66.02 62.57 67.77 60.83 68.60 

                     

X 16.38 10.16 9.600 18.63 6.699 17.38 18.86 12.30 5.011 10.09 18.82 19.40 16.75 16.83 14.95 6.522 9.117 10.31 14.24 12.11 

Y 58.75 55.75 69.36 58.01 61.17 69.10 64.43 60.10 64.37 63.72 57.79 62.63 63.03 58.65 60.96 59.62 63.43 55.05 67.54 61.67 

 

 

used larger smoothing parameter aimed at 

reducing the AMISE. Although boosting and 

bagging depend on larger smoothing parameter 

but we have demonstrated that their targets are 

different in terms of their contribution to the 

AMISE. 
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