NIGERIAN JOURNAL OF SCIENCE AND ENVIRONMENT
Journal of the Faculties of Science and Agriculture, Delta State University, Abraka, Nigeria

ISSN: 1119-9008
DOI: 10.5987/UJ-NJSE
Email: njse@universityjournals.org


PETROLEUM HYDROCARBONS DISTRIBUTION IN SEDIMENTS FROM THE THAMES ESTUARY, UK

DOI: 10.5987/UJ-NJSE.17.132.1   |   Article Number: EA2EE4807   |   Vol.15 (1) - November 2017

Author:  Aganbi Eferhire

Keywords: Polycyclic aromatic hydrocarbons, Thames Estuary, BTEX, n-Alkanes, Gas chromatography, Extractable petroleum hydrocarbons, Solvent extraction

Sediment cores were collected from the Stanford-Le-Hope mudflats within 1 km distance from the Petroplus-Coryton BP and Shell Haven refineries located on the north shore of the Thames Estuary in Essex, 40 km east of Central London, UK (51 °30´N, 0 °27´E). The BTEX compounds (benzene, toluene, ethylbenzene, o-, m-, and p-xylenes) in surface sediment samples were non-detectable within the linear calibration range of 0 – 50 mg l-1.  n-Alkanes (C11 - C40) and polycyclic aromatic hydrocarbons (PAHs) quantified at different sediment depths (2 cm core portions up to a total depth of 18 cm) indicated a high distribution of n-alkanes in subsurface sediments at the 10 – 12 cm depth; up to an average concentration of 1353.4 µg g-1 dry weight. The highest summed PAH (∑PAH) concentration of 2.95 µg g-1 dry weight was also found at the 10 – 12 cm depth. Source identification based on the ratio of low-molecular weight (LMW) to high-molecular weight (HMW) n-alkanes and the pristane/phytane ratio (Pr/Phy) indicated n-alkane input from biogenic sources. Nevertheless, the dominance of C1-naphthalene among ∑PAH concentrations suggested possible input from petroleum-related sources.

Coulon, F., Pelletier, E., St.Louis, R. and Gourhant, L.a.D.D. (2004). Degradation of petroleum hydrocarbons in two sub-antarctic soils: Influence of an oleophilic fertilizer. Environ Toxicol Chem 23: 1893-1901.

Da Silva, M.L. and Alvarez, P.J. (2007). Assessment of anaerobic benzene degradation potential using 16S rRNA gene-targeted real-time PCR. Environ Microbiol  9: 72-80.

Dewulf, J., Dewettinck, T., and De Visscher, A.a.V.L.H. (1996). Sorption of chlorinated C1- and C2-hydrocarbons and monocyclic aromatic hydrocarbons on sea sediment. Water Research 30: 3130-3138.

Douglas, G.S., Bence, A.E., Prince, R.C., and McMillen, S.J.a.B.E.L. (1996). Environmental stability of selected petroleum hydrocarbon source and weathering ratios. Environ Sci Technol 30: 2332-2339.

Fagbote, E. O., and Olanipekun, E. O. (2013). Characterization and sources of aliphatic hydrocarbons of the sediments of River Oluwa bitumen deposit area, Western Nigeria. J.  Sci. Res. Rep. 2(1): 228–248.

Iwegbue, Chukwujindu M. A., Aganbi Eferhire, Obi Grace, Osakwe Stephen A., Eguvbe Peter M., Ogala, Jude E. and Martincigh, Bice S. (2016). Aliphatic hydrocarbon profiles in sediments of the Forcados River, Niger Delta, Nigeria. Environ Forensics 0 (0):1–12.  http://dx.doi.org/10.1080/15275922.2016.1163620

Law, R.J. and Biscaya, J.L. (1994). Polycyclic aromatic hydrocarbons (PAH) - Problems and progress in sampling, analysis and interpretation. Mar. Pollut. Bull, 29: 235-241.

Nicolaus, E.E.M., Law, R.J., Wright. S.R., and Lyons, B.P. (2015). Spatial and temporal analysis of the risks posed by polycyclic aromatic hydrocarbon, polychlorinated biphenyl and metal contaminants in sediments in UK estuaries and coastal waters. Mar. Pollut. Bull. 95: 469-479.

Oliva, A. L., Quintas, P. Y., La Colla, N. S., Arias, A.H., and Marcovecchio, J.E. (2015). Distribution, sources, and potential ecotoxicological risk of polycyclic aromatic hydrocarbons in surface sediments from Bahía Blanca Estuary, Argentina. Arch. Environ. Contam. Toxicol., 69(2):163 - 172.

Reddy, C.M., Eglinton,T.I., Hounshell, A., White, H.K., Xu, L., and Gaines, R.B.a.F.G.S. (2002). The West Falmouth oil spill after thirty years: The presence of petroleum hydrocarbons in marsh sediments. Environ Sci Technol 36: 4754-4760.

Rogers, H.R. (2002). Assessment of PAH contamination in estuarine sediments using the equilibrium partitioning-toxic unit approach. Sci. Total Environ., 290: 139-155.

Roose, P., Dewulf, J., and Brinkman, U.A.a.V.L.H. (2001). Measurement of volatile organic compounds in sediments of the Scheldt estuary and the Southern North Sea. Water Research 35: 1478-1488.

Spencer, K.L. and MacLeod, C.L. (2002). Distribution and partitioning of heavy metals in estuarine sediment cores and implications for the use of sediment quality standards. Hydro. Earth Syst. Sci. 6(6): 989 - 998.

Trabelsi, S., and Driss, M.R., (2005). Polycyclic aromatic hydrocarbons in superficial coastal sediments from Bizerte Lagoon, Tunisia. Mar. Pollut. Bullet. 50: 344-348.

Vane, C.H., Harrison, I., and Kim, A.W., (2007). Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediments from the Mersey Estuary, U.K. Sci. Total Environ. 374:112–126.

Vane, C.H.  Chemical signatures of the Anthropocene in the Clyde Estuary, UK: sediment hosted Pb, 207/206 Pb, Total Petroleum Hydrocarbons (TPH), Polyaromatic Hydrocarbon (PAH) and Polychlorinated Bipheny (PCB) pollution records. Philos T R Soc Lond A, 369: 1085-1111.

Vane, Christopher H., Beriro, Darren J.  and Turner, Grenville H. (2015). Rise and fall of mercury (Hg) pollution in sediment cores of the Thames Estuary, London, UK. Earth  Environ Sci T R Soc Edin, 105: 285–296.

Volkman, J. K., Holdsworth, D.G., Neill, G.P., and Bavor, H. J. (1992). Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. Sci Total Environ 112: 203–219.

Wang, Zhendi, Yang, C., Yang, Z., Hollebone, B.,  Brown, C. E., Landriault, M.,  Sun, J.,  Mudge, S.M., Kelly-Hooper, F.  and Dixon, D.G. (2012). Fingerprinting of petroleum hydrocarbons (PHC) and other biogenic organic compounds (BOC) in oil-contaminated and background soil samples. J. Environ. Monit., 14:2367-2381.

Wetzel, M.A., Wahrendorf, D. and von der Ohe, P.C. (2013). Sediment pollution in the Elbe estuary and its potential toxicity at different trophic levels. Sci. Total Environ. 449:199–207.

Williams, T.D., Davies, I.M., Wu, H., Diab, A.M., Webster, L., Viant, M.R., Chipman, J.K., Leaver, M.J., George, S.G., Moffat, C.F. and Robinson, C.D. (2014). Molecular responses of European flounder (Platichthys flesus) chronically exposed to contaminated estuarine sediments. Chemosphere 108:152–158.