NIGERIAN JOURNAL OF SCIENCE AND ENVIRONMENT
Journal of the Faculties of Science and Agriculture, Delta State University, Abraka, Nigeria

ISSN: 1119-9008
DOI: 10.5987/UJ-NJSE
Email: njse@universityjournals.org


IN-VIVO ANTIPLASMODIAL ACTIVITY OF ETHANOLIC EXTRACT OF CASSIA ALATA AND PHYLLANTUS AMARUS

DOI: 10.5987/UJ-NJSE.16.059.1   |   Article Number: D4400F10   |   Vol.14 (1) - July 2016

Authors:  Okoro Edith, O. , Kadiri Helen, E. and Okoro Israel, O.

Keywords: Plasmodium berghei, Antiplasmodial, Cassia alata, Phyllantus amarus, medicinal plants, biochemical parameters

The antiplasmodial property of ethanol extracts of Cassia alata leaf and Phyllantus amarus (whole plant) was evaluated. Besides, effects of the extracts on certain biochemical parameters were also investigated in this study using mice. The extracts demonstrated significant antimalarial effects with the leaf of C. alata causing a reduction in parasitaemia (from 8.02±0.0 to 2.79±0.01), while the extract of P. amarus equally caused a decrease in the parasitemia from 8.01±0.03 to 3.96±0.01. The reduction in parasitemia observed for both plants extracts were significantly (P < 0.05) higher than the reference drug. On the seventh day of this study, biochemical analyses were done to assess the levels of alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate transaminase (AST), urea, creatinine and triacylglyceride as indices of liver and renal functions, respectively. A significant decrease (P < 0.05) and an increase (P < 0.05) in the serum ALT and triacylglyceride respectively were observed in the treated mice. However, there was no significant change noticed in the serum AST for the groups treated with extracts. There was a significant reduction (P < 0.05) noted in the serum urea level for the group treated with C. alata. Whereas, a reduction in the serum ALP level was seen for both plant groups, it was significant (P< 0.05) only in the P. amarus group. Thus, the study has shown that extracts of both plants posses’ significant (P< 0.05) suppressive effects against P. berghei infection in Swiss albino mice, and has also confirmed their traditional usages for the treatment of malaria.

Abosi, A.O. and Raseroke, B.H. (2003). In vivo antimalarial activity of Vernoniaamygdalina.British Journal of Biomedical Science, 60: 89-91.

Adeoye, B.A. and Oyedapo, O.O. (2004). Toxicity of Erythrophleumguineensestem-bark: Role of alkaloidal fraction. African Journal Traditional, Complementary and Alternative Medicines, 1:45-54.

Adjanahoun, E., Ahyi, M.R.A., Elewude, J.A., Fadoju, S.O., Gbile, Z.O., Goudole, E., Johnson, C.L.A., Keita, A., Morakinyo, O., Ojewole, J.A.O.,Olatunji, A.O. and Sofowora, W.A. (1991). Traditional medicine and pharmacopoeia:Contribution to ethnobotanical floristic studies in Western Nigeria.Publication of Organization of African Unity, Scientific Technical and Research Commission Lagos, Nigeria. p. 420.

Adolph, L. and Lorenz, R. (1982). Enzyme Diagnosis in Hepatic Disease in“Enzyme Diagnosis in Disease of the Heart, Liver and Pancreas”TutteDruckereiGmbtt, Salzweg-Passau Germany, pp. 81-104.

Ajaiyeoba, E., Falade, M., Ogbole, O., Okpako, L. and Akinboye, D. ( 2006). In vivo antimalarial and cytotoxic properties of Annona senegalensis extract. African Journal. Traditional, Complementary and Alternative Medicines, 3: 137-141.

Akah, P.A., Offiah, V.N. and Onuogu, E. (1991). Hepatotoxic effect of Azadirachta indica leaf extract in rabbits. Fitoterapia, 63 (4): 311-319.

Baba, S., Akerele,O. and Kawguchi, Y. (1992). Natural Resources and Human Health. Elsevier, Tokyo.

Bila, B., Gedris, E.T. and Herz, W. (1996). Niruroidine, a norsecurinine-typealkaloid from Phyllanthus niruroides. Phytochemistry, 41: 1441-1443.

Benjamin, T.V. and Lamikanra, T. (1981). Investigation of Cassia alata plant used in Nigiera for the treatment of skin diseases. Journal of Crude Drug Research, 145(10): 93-96.

Breman, J.G. (2001). The ears of the hippopotamus: manifestations, determi-nants and estimates of the Malaria burden American Journal of Tropical Medicine and Hygiene, 64(Suppl. 1-2): 1– 11.

Burkill, I.H. (1935). A dictionary of the economic products of the Malay Peninsula; Art Printing Works: Kuala Lumpur, Malaysia, pp. 1748-1749.

Chang, C.C., Lien, Y.C., Liu, K.C.S.C. and Lee, S.S. (2003). Lignans from Phyllanthus uranaria. Phytochemistry, 63: 825-833.

David, A.F., Philip, J.R.  Simon, L. C. Reto, B. and Solomon, N. (2004). Antimalaria drug discovery: Efficiency models for compound screening. Nature Reviews, 3: 509-520.

Devi, C.U., Valecha, N., Atul, P.K. and Pillai, C.R. (2000). Antiplasmodial effect of three medicinal plants: A preliminary study. Current Science, 80: 917-919.

Dikaso, D., Makonnen, E. Debella, A. Abebe, D. and Urga, K. (2006). In vivoanti malarial activity of hydro alcoholic extracts from Asparagus africanus Lam. in mice infected with P. berghei. Ethiopian Journal of Health Development, 20: 117-121.

Dioka, C., Orisakwe, E.O., Afonne, J.O., Agbasi, P.U., Akumka, D.O., Okonkwo, J.C. and Ilondu, N. (2002). Investigation into the heamatologic and hepatotoxic effects of Rinbacin in Rats. Journal of Health Science, 48(5): 393-398

Elujoba, A.A., Odeleye, O.M. and Ogunyemi, C.M. (2005). Traditional medicine development for medical and dental primary health care delivery systems in Africa. African Journal. Traditional, Complementary and Alternative Medicines, 21: 46-61.

Etta, H. (2008). Effects of Phyllanthus amaruson litter traits in albino Rats. Scientific Research and Essays, 3(8): 370-372.

Fabing, D.L. and Ertingshausen, G. (1971). Automated reaction-rate methodfor determination of creatinine with the centrifichem. Journal of Clinical Chemistry, 17: 696-700.

Faucher, J.F., Milana, E.N., Missinou, M.A., Ngomo, R., Kombila, M. and Kremsner, P.G. (2002). The impact of malaria on common lipid parameters. Parasitology Research, 88: 1040-1043.

FMOH (2005a). National Antimalarial Treatment Policy. Federal Ministry of Health, National Malaria and Vector Control Division, Abuja-Nigeria, P. 13.

FMOH (2005b). .National Antimalarial Treatment Guidelines. Federal Ministry of Health, National Malaria and Vector Control Division, Abuja-Nigeria, P. 25.

Foo, L.Y. (1995). Amariinic acid and related ellagitannins from Phyllanthus amarus. Phytochemistry, 39: 217-224.

Houghton, P.J., Woldemariam, T.Z., O’shea, S. and Thyagarajan, S.P. (1996). Two securinega-type alkaloids from Phyllanthus amarus. Phytochemistry, 43: 715-717.

Kayembe, J.S., Taba, K. M., Ntumba, K., Tshiongo, M.T.C. and Kazadi, T K. (2010). In vitro anti-malarial activity of 20 quinones isolated from four plants used by traditional healers in the Democratic Republic of Congo. Journal of Medicinal Plants Research, 4(11): 991-994.

Lindley, J. (1981). Flora Medical: A botanical account of all the more important plants used in medicine, India. Cambridge University Press, pp. 260-263.

Khanna, S. and Srivastava, S. (2002). Insecticidal Activity of the plant Phyllanthus amarus against Tribolium castaneum. Mutation Research, (322):185-192.

Kind, P.R. and King, E.J. (1954). Estimation of plasma phosphatase by determination of hydrolysed phenol with amino-antipyrine. Journal of Clinical Pathology, 7(4): 322-326.

Kochar, S.L. (1981). Tropical Crops: A Text Book of Economic botany. McMillan, International College editions. London.

Lee, S.S., Lin, M.T., Liu, C.L., Lin, Y.Y. and Liu, K.C.S.C. (1996). Six lignans from Phyllanthus myrtifolius. Journal of Natural Products, 59: 1061-1065.

Makinde, A.A., Igoli, J.O., Ta’ama, L., Shaibu, S.J. and Garba, A. (2007). Antimicrobial activity of Cassia alata. African Journal of Biotechnology, 6(13): 1509-1510.

Matsunga, S., Tanaka, R., Takaoka, Y., (1993). In, Y., Ishida, T., Rahmani, M. and Ismail, H.B.M (eds.), 26- nor-D: A fried ooleanane triterpenes from Phyllanthus watsonii. Phytochemistry, 32:165-170.

Milijaona, R., Valerie, T.R., Harrison, R., Peter, K.C., Michel, R., Dulcie, A.M. and Phillippe, M. (2003). Plants traditionally prescribed to treat tazo (Malaria) in the Eastern region of Madagascar. Malaria Journal, 2: 25-25.

Peter, I.T. and Anatoli, V.K. (1998). The Current Global Malaria Situation Malaria Parasite Biology, Pathogenesis and Protection. ASM Press, Washington DC.

Peters, W. (1998). Drug resistance in malaria parasites of animals and man. Advances in Parasitology, 41: 1-62.

Rai, P.P. (1987). Phytochemicals in Cassia siamae leaves. Journal of Current Research in Science, 44: 621-623.

Ranjna, C. (1999). Practical clinical biochemistry methods and interpretation. Jaypee Brothers Medical Publisher. 2nd edn, p. 117.

Reezal, I., Somchit, M.N. and Abdul, R.M. (2002). Proceedings of the Regionalsymposium on Environment and Natural Resources. Hotel Renaissance Kuala Lumpur Malaysis, 1: 654-659.

Reitman, S. and Frankel, S. (1957). A colorimetric method for the determination of serum glutamate oxaloacetic and glutamic pyruvic transaminases. American Journal of Clinical Pathology, 28: 56-63.

Srividiya, N., Single, R.T. and Hsu, F.L. (1995). Diuretic, hypotensive and hypoglycemic effect of Phyllanthus amarus. Indian Journal of Experimental Biology, (33):861-864.

Thyagarajan, H.F., Blumberg, B. and Chase, F. (1998). Chanca-piedra’s antiHBV and anti-viral properties. Indian Journal of Experimental Biology, 6(43): 76-78.

WHO (2010). The World Malaria Report 2005.World Health Organization 20 Avenue Appia, 1211 Geneva 27 Switzerland.

WHO, (1997). World malaria situation in 1994.Part 1-population at risk.Weekly Epidemiological Record, 72: 269-274.

Wongsrichanalai, C., Pickard, A.L., Wernsdofer, W.H. and Meshnick, S.R. (2002). Epidemiology of drug-resistant malaria.Lancet Infectious Diseases, 2: 209-218.

Wybenga, C., Di Giorgio, J. and Pileggi, V.J. (1971). Manuel and automatedmethods for urea nitrogen measurement in whole serum. Journal of Clinical Chemistry, 17: 891-895.

Zhang, Y.J., Tanaka, T., Iwamoto, Y., Yang, C.R. and Kuono, I. (2001). Novel sesquiterpenoids from roots of Phyllanthus emblica. Journal of Natural Products, 64:870-873.

Zhang, Y.J., Abe, T., Tanaka, T., Yang, C.R. and Kouno, I. (2002). Two new acylated flavanone glycosides from the leaves and branches of Phyllanthus emblica. Chemical and Pharmaceutical Bulletin, 50: 841-843.